Identification of fluorescent beads using a coded aperture snapshot spectral imager.
نویسندگان
چکیده
We apply a coded aperture snapshot spectral imager (CASSI) to fluorescence microscopy. CASSI records a two-dimensional (2D) spectrally filtered projection of a three-dimensional (3D) spectral data cube. We minimize a convex quadratic function with total variation (TV) constraints for data cube estimation from the 2D snapshot. We adapt the TV minimization algorithm for direct fluorescent bead identification from CASSI measurements by combining a priori knowledge of the spectra associated with each bead type. Our proposed method creates a 2D bead identity image. Simulated fluorescence CASSI measurements are used to evaluate the behavior of the algorithm. We also record real CASSI measurements of a ten bead type fluorescence scene and create a 2D bead identity map. A baseline image from filtered-array imaging system verifies CASSI's 2D bead identity map.
منابع مشابه
Multiframe image estimation for coded aperture snapshot spectral imagers.
A coded aperture snapshot spectral imager (CASSI) estimates the three-dimensional spatiospectral data cube from a snapshot two-dimensional coded projection, assuming that the scene is spatially and spectrally sparse. For less spectrally sparse scenes, we show that the use of multiple nondegenerate snapshots can make data cube recovery less ill-posed, yielding improved spatial and spectral recon...
متن کاملVideo rate spectral imaging using a coded aperture snapshot spectral imager.
We have previously reported on coded aperture snapshot spectral imagers (CASSI) that can capture a full frame spectral image in a snapshot. Here we describe the use of CASSI for spectral imaging of a dynamic scene at video rate. We describe significant advances in the design of the optical system, system calibration procedures and reconstruction method. The new optical system uses a double Amic...
متن کامل3D compressive spectral integral imaging.
A novel compressive 3D imaging spectrometer based on the coded aperture snapshot spectral imager (CASSI) is proposed. By inserting a microlens array (MLA) into the CASSI system, one can capture spectral data of 3D objects in a single snapshot without requiring 3D scanning. The 3D spatio-spectral sensing phenomena is modelled by computational integral imaging in tandem with compressive coded ape...
متن کاملSingle disperser design for compressive, single-snapshot spectral imaging
Recent theoretical work in “compressed sensing” can be exploited to guide the design of accurate, single-snapshot, static, high-throughput spectral imaging systems. A spectral imager provides a three-dimensional data cube in which the spatial information of the image is complemented by spectral information about each spatial location. In this paper, compressive, single-snapshot spectral imaging...
متن کاملCoded Hyperspectral Imaging and Blind Compressive Sensing
Blind compressive sensing (CS) is considered for reconstruction of hyperspectral data imaged by a coded aperture camera. The measurements are manifested as a superposition of the coded wavelengthdependent data, with the ambient three-dimensional hyperspectral datacube mapped to a two-dimensional measurement. The hyperspectral datacube is recovered using a Bayesian implementation of blind CS. Se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 49 10 شماره
صفحات -
تاریخ انتشار 2010